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by chromatography on silica with 9:1 CHCI3-CH3OH) to 
cytochalasin B has been described previously.13 
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Intramolecular Carbon Alkylation of Oxime Anions. 
Stereospecific Generation and Rearrangement of 
Nitrosocyclopropanes and Nitrosocyclobutanes1 

Sir: 

Alkylation of oxime anions is well known to occur both at 
oxygen (to yield oxime ethers, 1 —• 2)2 and at nitrogen (to yield 
nitrones, 1 —• 3).2 The process of carbon alkylation (to yield 
tertiary nitroso compounds, 1 — 4) is extremely rare.3,4 

Table I 

O-a lky la t i on 

N-a lky la t i 'on 

*V 

C-a1ky la t i on 

1 

N 

XY 

The intramolecular version of oxime alkylation should be 
very susceptible to kinetic control. In those cases where oxygen 
or nitrogen alkylation would lead to torsional strain in the imine 
moiety (Bredt's rule violations) it should be possible to realize 
carbon alkylation.4 

base" 

KO-/-Buc 

NaO-i-Buc 

LiO-I-Bu^ 
NaH^ 
(n-C4H9)4NOHrf 

KDPPMrfe 

KDPPM^ 

temp, 0C 

25 
25 
25 
25 
25 
0 

-20 

time, min* 

30 
35 

300 
45 

5 
<1 
50 

" 2 equiv. * Time for total disappearance of starting material (TLC 
analysis). c Heterogeneous reaction. d Homogeneous reaction. e 1 
or 2 equiv. 

Treatment of keto tosylate 55,6 with 2.2 equiv of hydroxyl-
amine hydrochloride in 25% pyridine-ethanol at room tem
perature for 12 h produced the anti-oxime tosylate 66_s (59%, 
mp 162-163 0 C). Reaction of oxime 6 with a suspension of 
potassium /erl-butoxide in tetrahydrofuran did not afford 
isolable cyclopropyl nitroso compound 7. The sole kinetic re
action product was the ring-contracted syn8 oxime 8.6-8 ap
parently via a homodienyl [1,5]-hydrogen migration on in
termediate 7. 

\ ^ N ) S 0 , 

KOt-Bu/THF 

25°C,30 min? 

5 (X=O) 

6 (X=NOK) 

The reaction (6 —» 8) shows the counterion effect expected 
for an anionic displacement, with the more ionic potassium and 
tetrabutylammonium salts being fastest (Table I). The base 
of choice for this reaction is the soluble reagent, potassium 
diphenyl-4-pyridylmethide (KDPPM).10 '11 The five-mem-
bered-ring analogue of 6 does not undergo the ring contraction 
reaction. 6-8,12,13 

Thin-layer chromatographic analysis of the reaction of the 
cycloheptyl oxime 96 - 8 , 1 4 with KDPPM reveals that the 
starting material is completely consumed within 5 min at —78 
0 C (syn oxime 116~9 is the only product detected). The color 

))_ (885) 

of the —78 0 C reaction solution is a light blue, suggestive of 
the intermediacy of nitroso compound 10. The blue color fades 
to produce a colorless solution at ca. —40 0 C. 1 5 

Further evidence of the stereospecificity of the ring-con
traction reaction was obtained in the cyclohexyl series. Partial 
hydrogenation (H2, PtO2, C2H5OH) of 2-ethyl-2-methyl-
1,3-cyclohexanedione6 yielded a 3:1 mixture of ketols6 which 
were subsequently converted16 to a 3:1 mixture of keto mesy
lates.6 Treatment of the keto mesylate mixture with hydrox-
ylamine hydrochloride in 25% pyridine-ethanol afforded a 3:1 
mixture of oxime mesylates 12a,b.6 Homogeneous major oxime 
mesylate 12a6 (mp 145-146 0C) could be obtained by frac
tional crystallization of the 12a,b mixture. The minor oxime 
mesylate 12b6 (mp 110-112 0C) was purified by chromatog
raphy (SiO2) of the crystallization residues. 

Reaction of the purified oxime mesylates 12a and 12b with 
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Table II6 7 

Q J , 
OSO, 

— >̂ Pi ne rs 

3 KDPP!:, THF 
65 = C, 4 h r . 

> rearranged 0xi>e 

WA'^ Zi. (93«) 

moiety and the carbon-hydrogen a bond. Formation of olefin 
16Z would require a boat-like transition state (15b) which 
substantially increases the distance between the nitroso group 
and the requisite carbon-hydrogen a bond.18 

The intramolecular alkylation of oximes can also be utilized 
as a method of ring expansion. Treatment of oxime 176~8'19 

with KDPPM or potassium /m-butoxide produces oxime 
olefin 19.6-8 '20 

KDPPH, TnF 
H 65=C, 1 h r . 

KDPPII, THF 

CII3
 6 5 ° C - 6 h r -

IUA («-) f . g . h 
%l (92It)1' 

" All reactions are carefully run under N2 to avoid formation of 
nitrocompounds (cf. ref 24). b Cis-trans mixture by 1H NMR, mp 
175-176 0C.26 c Analyzed as the isomerized25 anti oxime, mp 
115-118 0C. d Cis-trans mixture by 1H NMR, mp 168-169 0C.26 

e Syn oxime, mp 75-76 0C; anti oxime, mp 104-105 0C after isom-
erization.25 / Ca. 40% 32 also directly produced in the 23 — 31£,Z 
reaction. * Cis-trans mixture by 1HNMR, mp 167-168 0C.26 * This 
compound is not identical with 29Z.E which has mp 168-169 0C. 
Analyzed as the isomerized25 anti oxime (oil). 

KDPPM proceeded stereospecifically to afford 14 and 16£, 
respectively.6~8 Thin-layer chromatographic analysis (1:1 ethyl 
acetate-ether on AgN03-coated SiC>2 plates) of the reaction 
mixtures gave no indication (<1%) of crossover products 12a 
•** UE, 12b** 14. 

It should be noted that the reaction of 12b appeared to 
produce only one geometric isomer (16£) at the newly formed 
olefinic center (13C NMR analysis17). This geometry is in 
accord with a mechanism having a chair-like transition state 
(15a) which provides excellent overlap between the nitroso 

-2D7THF 

<*4k 
Uk 

\ KDPPK 

-207THF 

^CrY 
^ v „.CH3 

W. 

KDPPM/THF^ 

Q7<1 rain' 

U IJ? 1„9(55-60S) 

The homologous nitrosocyclobutane rearrangement was 
tested with the four diastereomeric oxime benzenesulfonates 
(20,21,22,23).21 '22 Reaction of 20 with KDPPM in THF for 
4 h at 25 0 C yielded a mixture of trans- and ds-nitroso dimers 
25£ (mp 67-68 0C) and 25Z (mp 160-162 0Q.6-7-2 3 '2 4 

THF,25eC 

1 

"5°C c ^ / © \ R 

m. <66s> 

XX7 0 '3 
I ^sV r j -

c© sx 

„ / D * V 

W. "K 

,26 (98"S) 

Nitroso dimers 25£ and 25Z (either individually or as a 
mixture) were stereospecifically rearranged to syn-oxime olefin 
266-8,25 ^ heating for 30 min in toluene at reflux. Presumably, 
the mechanism of this reaction involves dissociation of the 
dimer to monomer 24 which undergoes a homodienyl hydrogen 
migration at the elevated temperature.26 '27 

The corresponding results from intramolecular alkylation, 
followed by nitroso dimer rearrangement of isomers 21,22, and 
23, are listed in Table II. Several points are worthy of mention: 
(1) comparison of dimer mixtures 2SZ,E with 27Z,£, as well 
as 29Z.E with 31Z,£, reveals that the intramolecular alkyl-
ations are proceeding stereospecifically (<1% crossover, TLC 
analysis); (2) the intramolecular alkylation process may be 
used to generate relatively strained ring systems (29, 31); and 
(3) the fragmentation reaction also proceeds stereospecifically, 
initially producing the syn oxime under kinetic conditions.25 
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Steric Steering with Supported Palladium Catalysts 

Sir: 

The development of useful reactions catalyzed by soluble 
transition metals has led to interest in evolving "insolubilized" 
versions of these catalysts for ease of recovery and workup.' 
Frequently, such supported catalysts will lose some reactivity 
and/or selectivity. We report that supporting a palladium(O) 
species on both silica gel and cross-linked polystyrene not only 
does not lose reactivity but, because of steric steering, provides 
important enhanced selectivity over the solubilized forms. 

Phosphinylated silica gel was prepared by treating granular 
silica gel (Ventron 89 346,8-12 mesh, 300-m2/g surface area, 
1-mL/g pore volume) with 3-chloropropyltrimethoxysilane 
in hot toluene followed by TMS-chloride and then lithium 
diphenylphosphide in THF.2 The phosphinylated silica gel3 

was refluxed with tetrakis(triphenylphosphine)palladium in 
deoxygenated benzene to give the deep red silica gel catalyst. 
Phosphinylated polystyrene4 was prepared in the usual fashion 
starting with Dow polystyrene cross-linked with 2% divinyl-
benzene (50-100 mesh).5 Analysis indicates that chloro-
methylation led to 94% ring substitution^ and phosphide 
displacement613 led to 94% of the chlorides displaced. PaIl-
adation of the support as above gave the bright red polystyrene 
catalyst containing 1.62% palladium60 (equiv mol wt, ~6200 
per palladium).7 Both catalysts should be stored in the absence 
of solvent. Remarkably, in the dry state, both are fairly stable 
toward air, retaining activity even up to 2 months' storage, in 
contrast to tetrakis(triphenylphosphine)palladium which 
rapidly decomposes in air. 

In the case of carbon nucleophiles in allylic alkylation,8-9 

some increase in regioselectivity is noted. For example, sorbyl 
acetate showed an increased preference for alkylation at the 
less hindered terminus as summarized in eq I.'0 However, 

SO2Ph 

CO 2CH 3 6% Na(Hg) 

(Ph3P)4Pd 69 31 

®-Pd" 80 20 

utilization of nitrogen nucleophiles provided dramatic illus
trations of the beneficial effect of the supported catalysts.12 

Treatment of m'-3-acetoxy-5-carbomethoxy-1 -cyclohexene 
(1) with diethylamine and the soluble palladium catalyst led 
to a mixture of both the cis- and rran.s-3-diethylamino-5-
carbomethoxy-1-cyclohexenes10'13 (3 and 4 (see eq 2)) with 
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